黄晓林 |
1.黄土多尺度结构劣化-力学性质弱化;
2.黄土水动力灾变CFD-DEM/FDEM模拟;
3.岩体结构动力响应及灾变机理;
4.岩体多尺度异质结构及力学行为。
1.个人简历:
西安交通大学青年拔尖人才支持计划(2022)
中国科学院青年创新促进会会员(2021)
2.工作简历:
2022.06-至今:西安交通大学,特聘研究员
2019.01-2022.06:中国科学院地质与地球物理研究所,副研究员
2016.07-2019.01:中国科学院地质与地球物理研究所,博士后
1.国家重点研发计划子课题“高陡山体结构特征及强震动力响应规律”(主持)
2.国家自然科学基金青年项目“碎裂结构岩体动态剪切特性及强震溃散机理研究” (主持)
3.中科院地质地球所重点部署项目子课题“含沉积物天然气水合物力学特性” (主持)
4.中国科学院重点实验室开放基金一等资助“不同埋深岩体的波动力学特征研究” (主持)
5.中国博士后基金面上项目一等资助“充填结构面与压缩应力波相互作用研究” (主持)
6.国铁集团川藏铁路有限公司专题研究项目“新建铁路川藏线雅安至林芝段毛垭坝斜坡稳定性评估” (研究骨干)
7.中国科学院重点部署项目“交通廊道活动构造与地应力分布规律” (研究骨干)
8.中国科学院重点部署项目“工程边坡地震防控” (研究骨干)
1.代表性论著:
[1] Du, J., Huang*, X., Yang*, G., Xue, L., Wu, B., Zhang, M., Zhang, X. (2022). UDEC modelling on dynamic response of rock masses with joint stiffness weakening attributed to particle crushing of granular fillings. Rock Mechanics and Rock Engineering, DOI : 10.1007/s00603-022-03181-3.
[2] Huang*, X., Qi*, S., Guo, S., Zheng, B., Zhao, Q., Sha, P., Wang, T., Yao, X., Liang, N., Chang, J., Rong, X. (2022). Effect of the crystal habit on micromechanical extensile behaviors of the crystalline rock during compression. Engineering Geology, 310: 106874.
[3] Hou, X., Qi*, S., Huang, X., Guo, S., Zou, Y., Ma, L., Zhang, L. (2022). Hydrate morphology and mechanical behavior of hydrate-bearing sediments: a critical review. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,8, 161.
[4] Wu, S., Gao*, K., Feng, Y., Huang, X. (2022). Influence of slip and permeability of bedding interface on hydraulic fracturing: A numerical study using combined finite-discrete element method. Computers and Geotechnics, 148: 104801
[5] Zhai, M., Xue*, L., Bu, F., Yang, B., Huang*, X., Liang, N., Ding, H. (2022). Effects of Bedding Planes on Progressive Failure of Shales under Uniaxial Compression: Insights from Acoustic Emission Characteristics. Theoretical and Applied Fracture Mechanics, 119: 103343.
[6] Bu, F., Xue*, L., Zhai, M., Huang*, X., Dong, J., Liang, N., Xu, Chao. (2022). Evaluation of the characterization of acoustic emission of brittle rocks from the experiment to numerical simulation. Scientific Reports, 12, 498.
[7] Zou, Y., Qi*, S., Guo, S., Zheng, B., Zhan, Z., He, N., Hou, X., Huang, X., Liu, H. (2022) Factors Controlling the Spatial Distribution of Coseismic Landslides Triggered by the Mw 6.1 Ludian Earthquake in China, Engineering Geology, 296, 106477.
[8] Wu, M., Gao*, K., Liu, J., Song, Z, Huang*, X. (2021) Influence of rock heterogeneity on hydraulic fracturing: A parametric study using the combined finite-discrete element method. International Journal of Solids and Structures, 234–235: 111293.
[9] He, J., Zhan, Z., Qi*, S., Guo, S., Li, C., Zheng, B., Huang, X., Zou, Y., Yang, G., Liang, N. (2021). Seismic response characteristics and deformation evolution of the bedding rock slope using a large-scale shaking table. Landslides, 18, 2835–2853.
[10] Zheng, B., Qi, S., Luo, G., Liu, F., Huang, X., Guo, S. (2021) Characterization of discontinuity surface morphology based on 3D fractal dimension by integrating laser scanning with ArcGIS. Bulletin of Engineering Geology and the Environment, 80, 2261-2281.
[11] Huang*, X., Qi, S., Zheng, B., Liang, N., Li, L., Xue, L., Guo, S., Sun, X., Tai, D. (2021) An advanced grain-based model to characterize mechanical behaviors of crystalline rocks with different weathering degrees. Engineering Geology, 280, 105951.
[12] Yao, X., Qi*, S., Huang, X., Guo, S. (2020). An empirical attenuation model of peak ground acceleration (PGA) in the near field of a great earthquake. Natural Hazards. 105(1), 691-715.
[13] Zheng, B., Qi*, S., Huang, X., Liang, N., Guo, S. (2020) Compression-Induced Tensile Mechanical Behaviors of the Crystalline Rock under Dynamic Loads. Materials, 13(22), 5107.
[14] Zheng, B., Qi*, S., Guo, S., Huang, X., Liang, N., Zou, Y., Luo, G. (2020) A new shear strength criterion for rock masses with non-persistent discontinuities considering the nonlinear progressive failure process. Materials, 13(21), 4694.
[15] Huang, X., Qi *, S., Zheng, B., Guo, S., Liang, N., Zhan, Z. (2020). Progressive Failure Characteristics of the Brittle Rock under High-strain-rate Compression Using the Bonded Particle Model. Materials, 13(18), 3943.
[16] Huang, X., Qi *, S., Zheng, B., Liu, Y., Xue, L., Liang, N. (2020). Stress Wave Propagation through Rock Joints Filled with Viscoelastic Medium Considering Different Water Contents. Applied Sciences, 10, 4797.
[17] Qi*, S., Zheng, B., Wu, F., Huang, X., Guo, S., Zhan, Z., Zou, Y., Giovanni, B. (2020). A new dynamic direct shear testing device on rock joints. Rock Mechanics and Rock Engineering. 12(14), 5516.
[18] Zheng, B., Qi*, S., Huang, X., Guo, S., Wang, C., Zhan, Z., Luo, G. (2020). An advanced shear strength criterion for rock discontinuities considering size and low shear rate. Applied Sciences, 10, 4095.
[19] Li*, L.; Huang, B.; Huang, X.; Wang, M.; Li, X. (2020). Tensile and Shear Mechanical Characteristics of Longmaxi Shale Laminae Dependent on the Mineral Composition and Morphology. Energies, 13, 2977.
[20] Qi*, S., Lan, H., Martin, D., Huang, X. (2020). Factors Controlling the Difference in Brazilian and Direct Tensile Strengths of the Lac du Bonnet Granite. Rock Mechanics and Rock Engineering, 53, 1005–1019
[21] Huang, X., Qi, S., Yao, W., and Xia*, K. (2019). Effect of filling humidity on the propagation of high-amplitude stress waves through an artificial joint. Geotechnical Testing Journal, 42(1): 30-42.
[22] Huang, X., Qi*, S., Xia, K., and Shi, X. (2018). Particle crushing of a filled fracture during compression and its effect on stress wave propagation. Journal of Geophysical Research: Solid Earth, 123: 5559-5587.
[23] Huang, X., Zhao., Q., Qi*., S., Xia., K., Grasselli, G., and Chen, X. (2017). Numerical simulation on seismic response of the filled joint under high amplitude stress waves using FDEM. Materials, 10, 13.
[24] Huang, X., Qi., S., Xia*., K., Zheng., H., and Zheng., B. (2016). Propagation of high amplitude stress waves through a filled artificial joint: An experimental study. Journal of Applied Geophysics, 130: 1-7.
[25] Huang, X., Qi*, S., Williams, A., Zou, Y., and Zheng B. (2015). Numerical simulation of stress wave propagating through filled joints by particle model. International Journal of Solids and Structures, 69(70): 23-33.
[26] Huang, X., Qi*, S., Liu, Y., and Zhan, Z. (2015). Stress wave propagation through viscous-elastic jointed rock masses using propagator matrix method (PMM). Geophysical Journal International, 200(1): 452-470.
[27] Huang, X., Qi*, S., Guo, S., and Dong, W. (2014). Experimental study of ultrasonic waves propagating through a rock mass with a single joint and multiple parallel joints. Rock Mechanics and Rock Engineering, 47: 549-559.
2.科研获奖:
[1] 中国岩石力学与工程学会自然科学一等奖(2020,排名第二)
[2] 中国科学院优秀博士学位论文(2017)
[3] 中国科学院院长优秀奖(2016)
[4] 博士研究生国家奖学金(2015)
[5] 中国科学院大学“三好学生”/“三好学生标兵”(2013)
[6] 第15次全国岩石力学与工程学术年会优秀报告奖(2018)
[7] 第十五届全国岩石动力学学术大会优秀报告奖(2016)
[8] 地球与行星全国博士后学术论坛优秀报告奖(2016)
3.人才称号:
西安交通大学青年拔尖人才支持计划(2022)