设为首页|English Version
当前位置: 首页 >> 师资队伍
教师内容页
吴云  
研究领域(方向)

(1)航空发动机稳定性与等离子体流动控制;

(2)航空发动机点熄火特性与等离子体点火助燃;

(3)涡轮连续爆震航空发动机。

招生方向:

080200机械工程:新型航空发动机原理与技术(博士、硕士)

080700动力工程及工程热物理:内燃机燃烧与排放机理及其控制(博士)、动力机械及工程(硕士)

个人及工作简历

吴云,西安交通大学机械工程学院航空发动机研究所所长,教授。主要从事航空发动机气动与燃烧研究。获国家杰出青年科学基金资助。获军队科技进步一等奖2项、二等奖1项,全国优秀博士学位论文,吴仲华优秀青年学者奖、“航空强国中国心”突出贡献一等奖、中国航空学会青年科技奖、兴洲奖。“两机”重大科技专项基础研究专家组成员,中国工程热物理学会热机气动热力学分会委员兼总干事,中国力学学会等离子体科学与技术专业委员会委员,中国电工技术学会等离子体及应用专业委员会委员,国际燃气轮机学会叶轮机械委员会委员,美国航空航天学会等离子体动力学与激光委员会国际委员。

科研项目

[1] 国家杰出青年科学基金项目,航空发动机内流等离子体激励调控,2021年1月至2025年12月,400万元,主持

[2] “两机”重大科技专项基础研究项目,XX条件下的点熄火特性、预测与边界拓宽方法,2018年7月至2021年7月,3920万元,主持

[3] “两机”重大科技专项基础研究项目专题,XX环境下压气机扩稳机理研究,2018年7月至2021年7月,300万元,主持

[4] “基础XX”计划课题,XXXX等离子体激励机理与方法研究,2019年7月至2022年6月,750万元,主持

[5] 国家自然科学基金重大研究计划集成项目课题,强旋流点火火焰传播特征及相互作用试验研究,2020年1月至2023年12月,150万元,主持

[6] 国家自然科学基金重大研究计划培育项目,滑动弧等离子体拓宽双模态冲压燃烧室点火边界的探索研究,2020年1月至2022年12月,60万元,主持

学术及科研成果、专利、论文

科研获奖:

[1] 第一获奖人,XXXXX等离子体流动控制机理与实验验证,省部级科技进步一等奖,2018

[2] 第一获奖人,XXXXX多通道与滑动弧等离子体助燃技术,省部级科技进步一等奖,2020

[3] 第二获奖人,等离子体流动控制XXXX研制与基础实验研究,省部级科技进步二等奖,2007

人才称号:

[1] 国家杰出青年科学基金,2020

[2] 国家优秀青年科学基金,2015

学术著作:

[1]Wu Yun, Li Ying-hong. Plasma Flow Control(Chapter in Encyclopedia of Plasma Technology), Taylor & Francis, 2017, 1016-1037, DOI: 10.1081/E-EPLT-120052929

[2]Wu Yun, Jia Min, Liang Hua, Song Huimin, and Li Yinghong. Nanosecond Pulsed Plasma Flow Control: Progress and Problems. Complex Motions and Chaos in Nonlinear Systems(Chapter 5),Volume 15 of the series Nonlinear Systems and Complexity, 2016, Springer International Publishing Switzerland, 137-171

[3]吴云, 李应红, 梁华. 等离子体流动控制在改善气动特性中的应用. 大气压放电等离子体及其应用(第14章). 科学出版社, 2015, 北京

[4]Li Yinghong, Wu Yun, Song Huimin, et al. Plasma Flow Control(Aeronautics and Astronautics,Chapter 2), In-Tech, 2011, Vukovar

科研论文:

[1]Miao Huifeng, Zhang Zhibo, Wu Yun, et al. Semiconductor enhanced plasma synthetic jet actuator. Journal of Physics D: Applied Physics, 2021, 54: 015206

[2]Song Feilong, Wu Yun, Xu Shida, et al. The impact of fuel ratio and refueling mode on pre-combustion cracking properties of RP-3 kerosene. International Journal of Hydrogen Energy, 2020, 45(53): 28505-28519

[3]Song Feilong, Wu Yun, Xu Shida, et al. N-Decane reforming by gliding arc plasma in air and nitrogen. Plasma Chemistry and Plasma Processing, 2020, 40(6), 1429-1443

[4]Chen Xiancong, Zhu Yifei, Wu Yun, et al. Modeling and theoretical analysis of SDBD plasma actuators driven by Fast-Rise-Slow-Decay Pulsed-DC voltages. Journal of Physics D: Applied Physics, 2020, online

[5]Chen Xiancong, Zhu Yifei, Wu Yun. Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage. Plasma Sources Science and Technology, 2020, 29: 095006

[6]Yang Xingkui, Song Feilong, Wu Yun, et al. Investigation of rotating detonation fueled by a methane-hydrogen-carbon dioxide mixture under lean fuel conditions. International Journal of Hydrogen Energy, 2020, 45(41): 21995-22007

[7]Tang Mengxiao, Wu Yun, Guo Shanguang, et al. Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control. Physics of fluids, 2020, 32, 076104

[8]Zhong Yepan, Wu Yun, Jin Di, et al. Rotating detonation mode recognition using non-intrusive vibration sensing. Energy, 2020, 199: 117466

[9]Zhang Zhibo, Zhang Xiaoning, Wu Yun, et al. Experimental research on the shock wave control based on one power supply driven plasma synthetic jet actuator array. Acta Astronautica, 2020, 171: 359-368

[10]Song Feilong, Wu Yun, Xu Shida, et al. Effects of refueling position and residence time on pre-combustion cracking characteristic of aviation kerosene RP-3. Fuel, 2020, 270: 117548

[11]Feng Rong, Li Jun, Wu Yun, et al. Ignition and blow-off process assisted by the rotating gliding arc plasma in a swirl combustor. Aerospace Science and Technology, 2020, 105752

[12]Zhu Yifei, Wu Yun, Wei Biao, et al. Nanosecond-pulsed dielectric barrier discharge-based plasma-assisted anti-icing: modeling and mechanism analysis. Journal of Physics D: Applied Physics, 2020, 53: 145205

[13]Wei Biao, Wu Yun, Liang Hua, et al. Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator. Aerospace Science and Technology, 2020, 105584

[14]Sun Zhengzhong, Gan Tian, Wu Yun. Shock-wave/boundary-layer interactions at compression ramps studied by high-speed schlieren. AIAA Journal, 2020, 58(4): 1681-1688

[15]Zhang Haideng, Wu Yun, Li Yinghong. Mechanism of compressor airfoil boundary layer flow control using nanosecond plasma actuation. International Journal of Heat and Fluid Flow, 2019, 80: 108502

[16]Zhong Yepan, Wu Yun, Jin Di, et al. Investigation of rotating detonation fueled by the pre-combustion cracked kerosene. Aerospace Science and Technology, 2019, 95: 105480

[17]Song Feilong, Wu Yun, Xu Shida, et al. Pre-combustion cracking characteristics of kerosene. Chemical Physics Letters, 2019, 737: 136812

[18]Zhong Yepan, Wu Yun, Jin Di, et al. Effect of channel and oxidizer injection slot width on the rotating detonation fueled by pre-combustion cracked kerosene. Acta Astronautica, 2019, 165: 365-372

[19]Wei Biao, Wu Yun, Liang Hua, et al. Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer. Physics of Fluids, 2019, 31: 091701

[20]Wei Biao, Wu Yun, Liang Hua, et al. SDBD based plasma anti-icing: A stream-wise plasma heat knife configuration and criteria energy analysis. International Journal of Heat and Mass Transfer, 2019, 138: 163-172

[21]Zhang Haideng, Wu Yun, Li Yinghong, Yu Xianjun, Liu Baojie. Control of compressor tip leakage flow using plasma actuation. Aerospace Science and Technology, 2019, 86: 244-255

[22]Lin Bingxuan, Wu Yun, Zhang Zhibo, et al. Ignition enhancement of lean propane/air mixture by multi-channel discharge plasma under low pressure. Applied Thermal Engineering, 2019, 148: 1171-1182

[23]Song Feilong, Wu Yun, Xu Shida, et al. N-decane decomposition by microsecond pulsed DBD plasma in a flow reactor. International Journal of Hydrogen Energy, 2019, 44(7): 3569-3579

[24]Lin Bingxuan, Wu Yun, Zhu Yifei, et al. Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement. Applied Energy, 2019, 235: 1017-1026

[25]Bian Dongliang, Wu Yun, Long Changbai, et al. Effects of material degradation on electrical and optical characteristics of surface dielectric barrier discharge. Journal of Applied Physics, 2018, 124, 183301

[26]Huang Shengfang, Wu Yun, Song Huimin, et al. Experimental investigation of multichannel plasma igniter in a supersonic model combustor. Experimental Thermal and Fluid Science, 2018, 99: 315-323

[27]Tang Mengxiao, Wu Yun, Wang Hongyu, et al. Characterization of transverse plasma jet and its effects on ramp induced separation. Experimental Thermal and Fluid Science, 2018, 99: 584-594

[28]Feng Rong, Li Jun, Wu Yun, et al. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor. Aerospace Science and Technology, 2018, 79: 145-153

[29]Huang Shengfang, Song Huimin, Wu Yun, et al. Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter. Chinese Physics B, 2018, 27(3): 1674-1056

[30]Zhong Yepan, Jin Di, Wu Yun, Chen Xin. Investigation of rotating detonation wave fueled by “ethylene-acetylene-hydrogen” mixture. International Journal of Hydrogen Energy, 2018, 43(31): 14787-14797

[31]Bian Dongliang, Wu Yun. Enduring and stable surface Dielectric Barrier Discharge (SDBD) plasma using fuorinated multi-layered polyimide, Polymers, 2018, 10, 606

[32]Gan Tian, Wu Yun, Sun Zhengzhong, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators. Physics of Fluids, 2018, 30, 055107

[33]Tang Mengxiao, Wu Yun, Wang Hongyu, Jin Di, Guo Shanguang, Gan Tian. Effects of capacitance on a plasma synthetic jet actuator with a conical cavity. Sensors and Actuators A: Physical, 2018, 276: 284-295

[34]Bian Dongliang, Wu Yun, Jia Min. Experimental investigation of surface dielectric barrier discharge plasma actuator based on fluorinated polyimide. Sensors and Actuators A: Physical, 2018, 276: 320-327

[35]Bian Dongliang, Wu Yun, Jia Min. Characterization of surface dielectric barrier discharge (SDBD) based on PI/Al2O3 nanocomposite. Plasma Processes and Polymers, 2018, 15(7): e1700236

[36]李应红, 吴云, 张海灯, 等. 等离子体激励式压气机. 推进技术, 2017 , 38(10): 2164-2171

[37]Bian Dongliang, Wu Yun, Jia Min, et al. PI/Al2O3 nanocomposite based long lifetime surface dielectric barrier discharge plasma actuator. Sensors and Actuators A: Physical, 2017, 267: 90-98

[38]Bian Dongliang, Wu Yun, Jia Min, et al. Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator. Chinese Physics B, 2017, 26: 084703

[39]Lin Bingxuan, Wu Yun, Zhang Zhibo, et al. Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures. Combustion and Flame, 2017, 182: 102-113

[40]Zhang Zhibo, Wu Yun, Jia Min, et al. MHD-RLC discharge model and the efficiency characteristics of plasma synthetic jet actuator. Sensors and Actuators A: Physical, 2017, 261: 75-84

[41]Zhang Zhibo, Wu Yun, Sun Zhengzhong, et al. Experimental research on multichannel discharge circuit and multi-electrode plasma synthetic jet actuator. Journal of Physics D: Applied Physics, 2017, 50(16): 165205

[42]Zhang Zhibo, Wu Yun, Jia Min, et al. The multichannel discharge plasma synthetic jet actuator. Sensors and Actuators A: Physical, 2017, 253: 112-117

[43]Zhang Zhibo, Wu Yun, Jia Min, et al. Modeling and optimization of the multichannel spark discharge. Chinese Physics B, 2017, 26 (6),065204

[44]Zong Haohua, Wu Yun, Song Huimin, et al. Efficiency characteristic of plasma synthetic jet actuator driven by pulsed direct-current discharge. AIAA Journal. 2016, 54(11): 3409-3420

[45]Zong Haohua, Wu Yun, Jia Min, et al. Influence of geometrical parameters on performance of plasma synthetic jet actuator. Journal of Physics D: Applied Physics, 2016, 49: 025504

[46]Zong Haohua, Wu Yun, Song Huimin, et al. Investigation of the performance characteristics of a plasma synthetic jet actuator based on a quantitative Schlieren method. Measurement Science and Technology, 2016, 27: 055301

[47]Li Yang, Jia Min, Wu Yun, et al. Influence of air pressure on the performance of plasma synthetic jet actuator. Chinese Physics B, 2016, 25(9): 095205

[48]Lin Bingxuan, Wu Yun, Li Yiwen, et al. Characteristic of rich-mixture ignition kernel driven by nanosecond repetitive pulsed discharge. SCIENCE CHINA: Technological Sciences, 2016, 59(1): 109-116

[49]吴云, 李应红. 等离子体流动控制研究进展与发展展望(特邀综述).航空学报, 2015, 36(2): 381-405

[50]Wu Yun, Zhu Yifei, Cui Wei, et al. Simulation of nanosecond pulsed DBD plasma actuation with different rise times. Plasma Processes and Polymers, 2015, 12(7): 642-654

[51]Zhang Zhibo, Wu Yun, Jia Min, et al. Influence of the discharge location on the performance of a three-electrode plasma synthetic jet actuator. Sensors and Actuators A: Physical, 2015, 235: 71-79

[52]Zong Haohua, Wu Yun, Li Yinghong, et al. Analytic model and frequency characteristics of plasma synthetic jet actuator. Physics of Fluids, 2015, 27, 027105

[53]Zong Haohua, Cui Wei, Wu Yun, et al. Influence of capacitor energy on performance of a three-electrode plasma synthetic jet actuator. Sensors and Actuators A: Physical, 2015, 222: 114-121

[54]Zhu Yifei, Wu Yun, Jia Min, et al. Influence of positive slopes on ultrafast heating in an atmospheric nanosecond-pulsed plasma synthetic jet. Plasma Sources Science and Technology, 2015, 24: 015007

[55]Zhang Haideng, Wu Yun, Li Yinghong. Evaluation of RANS turbulence models in simulating the corner separation of a high-speed compressor cascade. Engineering Applications of Computational Fluid Mechanics, 2015, 9:1477-489

[56]Zhang Haiding, Wu Yun, Li Yinghong, et al. Experimental investigation on a high subsonic compressor cascade flow. Chinese Journal of Aeronautics, 2015, 28(4): 1034-1043

[57]吴云, 李应红. 等离子体流动控制与点火助燃研究进展(特邀综述).高电压技术, 2014, 20(7): 2024-2038

[58]Wu Yun, Li Yinghong, Jia Min, et al. Effect of pressure on the emission characteristics of surface dielectric barrier discharge plasma. Sensors and Actuators A: Physical, 2013, 203(7):1-5

[59]Wu Yun, Li Yinghong, Jia Min, et al. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma. Journal of Applied Physics, 2013, 113: 033303

[60]Zhu Yifei, Wu Yun, Cui Wei, et al. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge. Journal of Physics D: Applied Physics, 2013, 46(35): 355205

[61]Zhu Yifei, Wu Yun, Cui Wei, et al. Numerical investigation of energy transfer for fast gas heating in atmospheric nanosecond pulsed DBD under different negative slopes. Journal of Physics D: Applied Physics, 2013, 46(49): 495205

[62]Li Yinghong, Wu Yun, Li Jun. Review of the investigation on plasma flow control in China. International Journal of Flow Control, 2012, 4(1-2): 1-17

[63]Wu Yun, Li Yinghong, Jia Min, et al. Experimental investigation of the nanosecond discharge plasma aerodynamic actuation. Chinese Physics B, 2012, 21(4): 045202

[64]Zhao Xiaohu, Wu Yun, Li Yinghong, et al. Topological analysis of plasma flow control on corner separation in a highly loaded compressor cascade. Acta Mechanica Sinica, 2012, 28(5): 1277-1286

[65]Wu Yun, Li Yinghong, Jia Min, et al. Experimental investigation into characteristics of plasma aerodynamic actuation generated by dielectric barrier discharge. Chinese Journal of Aeronautics, 2010, 23(1): 39-45

[66]Li Yinghong, Wu Yun, Zhou Min, et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation. Experiments in Fluids, 2010, 48(6): 1015-1023

[67]Wu Yun, Li Ying-hong, Jia Min, et al. Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics. Applied Physics Letters, 2008, 93(3): 031503

[68]Li Yinghong, Wu Yun, Jia Min, et al. Optical emission spectroscopy investigation of a surface dielectric barrier discharge plasma aerodynamic actuator. Chinese Physics Letters, 2008, 25(11): 4068-4071

联系方式
电子邮箱:wuyun1223@126.com
联系电话:13572881386
联系地址:
更新日期:2021-01-19